VELOCITY PROFILE IN A TURBULENT BOUNDARY
LAYER OF A SUPERSONIC GAS STREAM
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A semiempirical equation is proposed for relating the coefficients of molecular and turbulent
viscosgity in the laminar sublayer and in the transition region, Simple formulas are derived
for determining the velocity throughout the boundary layer and the frictional stress at the
surface of a plate at various values of the Mach number, The results of calculations are
compared with experimental data,

Theoretical studies of the turbulent houndary layer which yield results applicable to engineering prob-
lems are, as a rule, based on the two-layer flow model. The Prandtl formula is used for frictional stress
in the turbulent region and the Newton formula is applied to the predominantly viscous laminar sublayer.
Such a two-layer model is, apparently, valid when the laminar sublayer is sufficiently thin. It has been
shown in [1], on the basis of direct velocity measurements, that the thickness of the laminar sublayer in-
creases greatly at a Mach number Ma,, > 8 and reaches 20-30% of the total boundary layer at Ma_ = 9-10.
Consequently, the transitional layer between predominantly laminar flow and fully developed turbulent flow
must also be appreciable, As the effect of molecular viscosity within the boundary layer extends over a
wider region, the distribution of turbulent viscosity near the wall may strongly affect the profile of aver-
age velocities (and thus also of average temperature) across the boundary layer, Knowing the flow charac-
teristics of the entire boundary layer is abgolutely necessary for an analysis of the physicochemical pro-
cesses in that layer.

We will first consider the boundary layer of an incompressible gas. The analysis will be based on
the assumption that the tangential velocity of the gas is distributed as follows
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over the entire boundary layer at a flat plate.
For small values of 17 (near the wall) function f(n) = n, for large values of
f () = Cniim . (2)

Coefficient C and the power exponent 1/n are weak functions of the Reynolds number [2]. Within
the range Re, = 5- 10°-107, for example,they maybetakenequalto 8,57 and 1/7 respectively (C = 8,57 rather
than 8.74 in [2] agrees better with test data on skin friction at a plate). We will seek function {1} in the
form

Fn) = __Q_El_ (3)
[1 + (an)k] nk

over the entire range of 1, satisfying both extremes of small and large values. Herea = (1/ C)n/ (n“i). In
addition to the known constants C and n, this expression contains also an exponent k which depends on the
turbulent viscosity in the boundary layer, Indeed, the tangential friction stress in a turbulent stream is
expressed as

T = (1 + g/v) (du/dy). (4
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Fig. 1. Profile of average velocity and tur-
bulent viscosity near a wall: 1) Schubauer
data 14]; 2) Klebanov data [5]; 3) Simpson
data {5]; 4) Laufer data [4]; 5) Conte~Bello
data [6]; 6) relations (3) and (5); 7) rela-
tions (2) and (7).

Inserting (1) and (3) into (4), we obtain
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At small values of n r ~7), by expanding expression (5) into a series in terms of the small parameter
(an), one will find that

g/v = (1 — ln) (1 + 1/k) (an)*. (6)
At large values of 1 expression (5) also simplifies, to
g/v = (1/t,) (riC)n'=1/m. (7

The value for k will be selected on the basis of closest agreement between relations (3), (5), and test re-
sults. It follows from the flow equation and the continuity equation for a boundary layer [3]that k = 3 near
the wall. In accordance with the various hypotheses, one usually lets k be equal to 3 or 4,

Results of calculations by formulas (3) and (5) have been plotted in Fig.1 for n=7, C = 8.57 (@
=0.0814), k =3 and 4. On the same diagram is also shown the coefficient of turbulent viscosity based on
test data by Schubauer, Klebanov, Simpson for a boundary layer and by Laufer for a channel, Data on the
distribution of average velocity have been borrowed from recent studies concerning the boundary layer [5]
and concerning the initial segment (x/h < 40) of a flat channel [6].

If the optimum value for k is to be selected on the basis of agreement with test results, then prefer-
ence should be given to k = 3. This value has, therefore, been used for determining the function (3). Both
f and &/v were also calculated with k = 2. The results here are found, however, to agree less closely with
test results,

It is evident from Fig.1 that the postulated relation (3} with k = 3 deviates from the linear velation £
=17 when 1 > 5 and agrees with the power-law relation (2) when 7 > 70 (an evaluation of the power-law rela-
tion by comparison with test data at n > 70 can be found in any monograph on the turbulent boundary layer).
We note that the dimensionless thickness of the trangitional region between a viscous laminar flow and a
fully developed turbulent flow (n = 5-70) is the same as suggested in [2].

An analysis of flow in the turbulent boundarylayer of a compressible gas is based on an extension of
relations (1) and (3), which have been verified experimentally for an incompressible gas. We assume that
for a compressible gas the structure of relation (1) will not change when put in differential form

du == df, dn = Mdy_
v
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In integral form, relations (8) become

74 14
5»6m:ﬂmnzva§W@mW. 9)
w ]

g

. l

The values of the coefficients and the exponents in formula (3) for f{n) will also be left unchanged. We
note that, under these assumptions, expression (5) for the coefficient of turbulent viscosity will also re-~
main unchanged.

The integral method, relations (9), of accounting for the variability of the physical properties of a
medium was first used in the study [7] of heat transmission through a channel with water in the supercriti-
cal state, where its viscosity, density, and thermal conductivity decrease fast with rising temperature.
The results of calculations agreed there clogely with thermal flux measurements at the wall, In the case
of a compressible gas, the viscosity and the density vary in the opposite sense as functiong of the tempera-
ture. For this reason, the validity of postulating the relation (8) should be verified for various forms of
the temperature~dependence of physical properties.

The general expression for frictional stress, according to the postulated relation (8) or (9) is
! 2
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We will consider the case of fully developed turbulence (ns > 70), where the value of f can be determined

from formula (2). Concerning the case where ng < 70 and f must be determined from the general formula
(3), we will comment appropriately as necesgary.

Inserting the value f = Cpl/ into (10) yields
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For a boundary layer which is turbulent immediately at the front edge of the plate, Eq. (11) becomes
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For an incompregsible fluid with n = 7 (C = 8.57), (11) and (13) become the well-known formulas
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Calculations of function $ have shown that its value in formulas (11) and (13) departs appreciably from unity.
Thus, at a Mach number in the 0-15 range, at a Reynolds number in the 3-10%-107 range, and at a temper-
ature factor t = Ty/ T,. in the 0.1-1,0 range, for example, the value of yfor air varies from 0.8 to 1.25,
Therefore, in engineering calculations one may let yto the power 2/(n + 1) be equal to 1,0 (or, for better
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precision, one may compute its value numerically on the basis of definition (12)). Thus, within the accu-
racy of the assumption that =1, the relative changes in the friction coefficient due to the compressibility
of a gas flowing with Rey = const and Re, = const can be expressed simply and explicitly as
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In order to calculate the friction coefficients by formula (14), one needs to have a relation between
the gas density and the gas velocity in the boundary layer. The stipulation of constant pressure and spec-
ific heat across the boundary layer, in conjunction with the particular energy integral (the Crocco integral)
corrected approximately for the restoration factor, yields the following well-known relation [8]:

o _ Tw _ 1—§
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wheret=T/Ty, Tp=Ty(1+p)isthe equilibrium wall temperature, 8=p/(1 +p), p=1r(% —- 1)MaZ /2, and
T is the restoration factor usually assumed equal to 0.89 (relation (15) is exact when r = 1), When relation
(15) is used, then the integrals (14) are taken in quadratures. As a rvesult, we have
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Formulas (16)-(17) simplify in special cases. When no heat transfer occurs (t = 1), for example,

2n
(Ci/Cphy = [V TB= 1 aresiny §1™,

or at a low gas velocity (3 —0)

2n
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According to these formulas, we find that the effect of the Reynolds number on the relative change
in the friction coefficient is indirect (through the power exponent). The higher the Reynolds number is,
the higher becomes the value of n and the stronger is the effect of gas compressibility. As Re — « (n —o),
the values of zpz/ () ang zp2/ (0+3) 40 (11) and (13) become exactly equal to unity, and these formulas be-
come the well-known relation at limiting conditions [8, 9l:

1
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After the friction coefficient has been determined to the first approximation, one can find the velocity
profile by numerically integrating Eq. (9). This equation can, for convenience, be rewritten as
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Using relation (15), one first computes the left-hand side of Eq. (19) and then, with the aid of graphs repre-
senting relation (3) (Fig.1), one finds successively n, y, ng, and 6. Equation (19) indicates that, unlike
the frictional stress at wall, the velocity profile in the boundary layer is significantly affected by all par-
ameters in (19).

Results of calculations according to formulas (16) and (17) with n = 7 are shown in Fig. 2 for the Mach
number Ma ranging from 0 to 5 at Rex = const and for the Mach number Ma ranging from 5 at Re = const.
The dashed line corresponds to the limiting-condition formula (18) att = 1. On the diagram are also shown
the test results by Coles [11], Wilson [12], Matting et al, [13], Korkegi [14] without heat transfer atthe wall
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Fig, 2. Relative variation of the friction coefficient with a changing Mach number: 1)

data in [10]; 2) data in [11]; 3) data in [12]; 4) data in [13]; 5) data in [14]; 6) data in

[(15); 7) data in [16]; 8) data in [1]; 9y data in [17]; 10) relations (16) and (17); 11) re-
lation (18) with t =1,

Fig. 3. Relative profile of average velocities in a turbulent boundary layer at various
values of the Mach number: 1) data in (18] (Ma,, = 4.2, Rex = 6.2°10%, t = 1); 2) data
in [16] (May, = 6.83, Rey = 8550, t =0.67); 3) data in [1] (Maw = 9.07, Rey = 2276, ¢

= 0.55); 4) data in [1] (Mag, =10.04, Rey = 1450, t = 0.51); 5) calculations by formu-
las (8) and (3) for test conditions (1-4); 6) calculations by formulas (1) and (3) (Ma,,
~ 0, Re, =107, t = 1),

(t = 1), and Sommer and Short [15] {t = 0.18-0.43), Lobb et al, [18] {t = 0.5-0.67), Hill {1] ¢ = 0.47-0.53),
and Nagamatsu et al. [17] (t = 0.214). According to Fig. 2, the calculations and the tests agree fairly up to
Ma, = 10. We note, furthermore that these calculations for Ma_ = 0-10 and t = 0,1-1.0 agree also within
12% with those in [8] and those based on the empirical formula in [18]:

(Cf/sz')x =% [1 Frx—1 MEQ/Q] —0,55,

representing an approximation of test data. For Ma_ = 12 and 14, however, the test values from [17]
shown in Fig. 2 are higher than calculated ones. One cause of thig discrepancy is the incorrectness of cal-
culations, Namely, the dimensionless thickness of the boundary layer n5 calculated according to relation
(19) for the given test conditions (Bey ~ 1000, t =0,214) is equal to 65 when Ma,, = 12 and equal to 32 when
Ma_ =14, This means, according to Fig. 1, that turbulence is not fully developed in the boundary layer.
In this case, for a more accurate calculation of Cf/ Cgj, one must ingert into the denominator of (10) the
value of f(ns) calculated according to (3), which at ng < 70 is smaller than Cné/ 1 (dashed lines in Fig. 1}.
Consequently, the calculated value of Cf/ C¢i will be higher than shown in Fig.2. As the Reynolds number
Re 4 decreases at constant values of t and the Mach number, or as the Mach number Ma,, increases at con-

stant values of t and the Reynolds number (i.e., as 15 decreases), the effect of C¢/ Cy; becomes increas-
ingly stronger.

Some results of rather reliable velocity measurements in a turbulent boundary layer of air, with a
laminar sublayer included in the test zone, are shown in Fig, 3. The test data here are by Matting et al.
[13], Lobb et al. [16], and Hill et al. [1]. The solid lines represent calculation formulas (3) and (8) with
n = 7 corresponding to the given test conditions. The dashed line represents calculated values for an in
compressible fluid with Rey = 107 (ng = 5000). The temperature-dependence of the air viscosity is based
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on the Sutherland formula. The calculated values of ns for tests 1-4 are respectively equal to 1460, 1580,
310, and 250, indicating a fully developed turbulence in the tested boundary layer.

A comparison between theoretical and experimental values in Fig. 3 will indicate a satisfactory agree-
ment between them (the slight discrepancy between calculations and test values in the Hill experiment at
Ma,_, = 10 can be partly explained by an inefficient profile of the supersonic nozzle when used in these tests).
On the basis of the values of the relative velocity gradients in the boundary layer, one can say that at high-
er values of the Mach number the laminar sublayer becomes a larger fraction of the turbulent boundary
layer.

Calculations have shown that the relative thickness of the turbulent region of a boundary layer varies
appreciably when the Reynolds number Re, the Mach number May, and the temperature factor t vary,
while the dimensionless thickness of the boundary layer s varies within the 100-1000 range. If all test
data in Fig. 3 as well as the data in [16] are plotted in coordinates (1, X V plow duly’C/2), they will closely

Q

enough fit on a single curve (3).

NOTATION
X, ¥ are the coordinates along and across a plate;
u is the average velocity not mean;
us= u/uw H
y =y/6;
T is the temperature;
P is the density;
i is the dynamic viscosity;
v, € are the coefficients of molecular and turbulent kinetic viscosity;
8 is the boundary-layer thickness;
4 is the momentum thickness;
Ma is the Mach number;
Re is the Reynolds number;
t = Ty/T, is the temperature factor;
T is the frictional stress;
Cy is the friction coefficient;
i is the dimensionless coordinate defined by formula (1) or (9);
f is the function (3);
P is the function (12);

n,C,a,k  are the coefficients in relations (2)-(7).

Subscripts and Superscripts

denotes outside the boundary layer;

denotes the edge of the boundary layer;
denotes wall;

denotes incompressible gas;

x, ¢ denotes constant values of x and ¢ respectively.
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